A Characterization of Projective Special Unitary Group U3(7) by nse
نویسندگان
چکیده
منابع مشابه
Characterization of projective special linear groups in dimension three by their orders and degree patterns
The prime graph $Gamma(G)$ of a group $G$ is a graph with vertex set $pi(G)$, the set of primes dividing the order of $G$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $G$ of order $pq$. Let $pi(G)={p_{1},p_{2},...,p_{k}}$. For $pinpi(G)$, set $deg(p):=|{q inpi(G)| psim q}|$, which is called the degree of $p$. We also set $D(G):...
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملa characterization of $l_2(81)$ by nse
let $pi_e(g)$ be the set of element orders of a finite group $g$. let $nse(g)={m_nmid ninpi_e(g)}$, where $m_n$ be the number of elements of order $n$ in $g$. in this paper, we prove that if $nse(g)=nse(l_2(81))$, then $gcong l_2(81)$.
متن کاملCharacterization of $mathbf{L_2(p^2)}$ by NSE
Let $G$ be a group and $pi(G)$ be the set of primes $p$ such that $G$ contains an element of order $p$. Let $nse(G)$ be the set of the number of elements of the same order in $G$. In this paper, we prove that the simple group $L_2(p^2)$ is uniquely determined by $nse(L_2(p^2))$, where $pin{11,13}$.
متن کاملcharacterization of projective special linear groups in dimension three by their orders and degree patterns
the prime graph $gamma(g)$ of a group $g$ is a graph with vertex set $pi(g)$, the set of primes dividing the order of $g$, and two distinct vertices $p$ and $q$ are adjacent by an edge written $psim q$ if there is an element in $g$ of order $pq$. let $pi(g)={p_{1},p_{2},...,p_{k}}$. for $pinpi(g)$, set $deg(p):=|{q inpi(g)| psim q}|$, which is called the degree of $p$. we also set $d(g):...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra
سال: 2013
ISSN: 2314-4106,2314-4114
DOI: 10.1155/2013/983186